Những câu hỏi liên quan
Dũng Senpai
Xem chi tiết
Nguyễn Linh Chi
7 tháng 8 2019 lúc 18:44

Bạn ơi đề bài có điều kiện a, b, c không vậy. Hay là a, b, c bất kì?

Bình luận (0)
Dũng Senpai
7 tháng 8 2019 lúc 21:17

dạ a,b,c>0 ạ.em quên mất 

Bình luận (0)
Nguyễn Linh Chi
7 tháng 8 2019 lúc 21:39

Với a, b, c >0

\(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\ge\frac{ab+bc+ac}{a^2+b^2+c^2}\) (1)

<=> \(1-\left(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\right)\le1-\frac{ab+bc+ac}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{1}{3}-\frac{abc}{a^3+b^3+c^3}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-ac-bc\right)\left(\frac{1}{a^2+b^2+c^2}-\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\right)\ge0\)(2)

Ta có: \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\ge0\)

Với a,b, c>0

(1) <=> \(\frac{1}{a^2+b^2+c^2}\ge\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\)

\(\Leftrightarrow3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2a^3+2b^3+2c^3-ab^2-ac^2-ba^2-bc^2-ca^2-cb^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+a^2\left(a-c\right)+b^2\left(b-a\right)+b^2\left(b-c\right)+c^2\left(c-a\right)+c^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(a-c\right)^2\ge0\)Luôn đúng với mọi a, b, c dương

Vậy (1) đúng

"=" xảy ra <=> a=b=c

Bình luận (0)
đoàn hoàng long
Xem chi tiết
Dạ Quân
Xem chi tiết
ღ๖ۣۜLinh
25 tháng 7 2019 lúc 21:25

Cho x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

Cho x,y>0x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

.............................

Bình luận (0)
Min Cute
Xem chi tiết
Nguyen Tran Tuan Hung
1 tháng 10 2017 lúc 16:13

Ta có : 4( b² + c² + d² + e²) ≥( b + c + d +e )² ( dễ lắm, bạn tự cm lấy nhé, ) 
=> ( b² + c² + d² + e²) ≥ ( b + c + d +e )²/4 (*) 
G/s bdt đề bài đúng, ta có: 
<=> a² + b²+ c² + d²+ e² - a(b + c + d +e) ≥ 0 
Lại có ( *) => ta có : a² + b²+ c² + d² + e² - a(b + c + d +e) ≥ a² + ( b + c + d +e )²/4 - a(b + c + d +e) 
<=> [ a - ( b + c+ d +e)/2]² => hiển nhiên đúng 
Vậy ta có dpcm. 
Với cách này ta cũng có thể chứng minh các bdt tương tự với 3 biến, 4 biến v.v.... 
Chúc bạn học giỏi, chào bạn!  

Bình luận (0)
Đỗ Thị Thu Loan
Xem chi tiết
IS
1 tháng 4 2020 lúc 11:05

mình nghĩ đề nó như thế này

\(\sqrt{a^2+b^2}-\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2-\left(b+d^{ }\right)^2}\)

hai zế BĐT ko âm nên bình phương 2 zế ta có

\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+2ac+c^2+b^2+2bd+d^2\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\left(1\right)\)

Nếu \(ac+bd< 0\)thì BĐT đc c/m

Nêu \(ac+bd\ge0\left(1\right)\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2acbd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2acbd\)

\(\Leftrightarrow a^2d^2+b^2c^2-2acbd\ge0\Leftrightarrow\left(ad-bc\right)^2\ge0\)( luôn đúng )

dấu = xảy ra khi \(ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Bình luận (0)
 Khách vãng lai đã xóa
nguyễn thì hải nhi
Xem chi tiết
não cá vàng
Xem chi tiết
Long Lê
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
31 tháng 8 2018 lúc 17:08

Giải theo kiểu lớp 8 cho chắc :v

Ta có : \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow\dfrac{3a^2+3b^2+3c^2}{9}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Đúng )

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c\)

Bình luận (0)
DƯƠNG PHAN KHÁNH DƯƠNG
31 tháng 8 2018 lúc 16:51

Áp dụng BĐT Cauchy - schwarz dưới dạng engel ta có :

\(\dfrac{a^2+b^2+c^2}{3}=\dfrac{a^2}{3}+\dfrac{b^2}{3}+\dfrac{c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}=\left(\dfrac{a+b+c}{3}\right)^2\)

Dấu \("="\) xảy ra khi \(a=b=c\)

Bình luận (3)
Hoàng Tử Lớp Học
Xem chi tiết